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Background: Project KI-Absicherung
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see also https://www.ki-absicherung.vdali.de
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KI Absicherung makes the safety of AI-based function modules

for highly automated driving provable.Vision

Use-case Camera/LiDAR based single frame pedestrian detection

https://www.ki-absicherung.vdali.de/
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Rating safety:

Safety Integrity Levels (ISO 26262-3, 6.4.3) derived from

› Probability

› Severity

› Controllability

Automotive Safety Basics
Safety

Def. Safety
means absence of unreasonable risk due to

• malfunction (ISO 26262-1, 3.132)

• intended functionality

(foreseeable misuse, performance limitation wrt. environment) 
(ISO/PAS 21448)

[…] according to valid societal

moral concepts (ISO 26262-1, 3.176) 
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Automotive Safety Basics
Safety Case

Claim 

(Goal)

Sub-claim / 

Requirement

Argumentation 

strategy

…

Evidence

(Solution)
…

Arguments may be

• Deterministic

• Probabilistic

• Qualitative(!)

Evidence types:

• Design & process

• System level

• Unit level

• Verification

• (Experience)
(Bishop and Bloomfield 1998)

Def.: Safety Case
is a documented body of evidence

providing convincing and valid argument

that a system is adequately safe

for a given application in a given environment
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What is mitigated?
Safety Requirements
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e.g., snow

Def.: DNN-specific Safety Concern
underlying issues of AI-based perception which may negatively affect the safety of a system

Triggering 

Event

Erroneous 

Output+

Insufficient 

Generalization 

Capability

DNN-specific 

Safety Concerns

Failure: Unsafe 

Control Action
Hazard

→ Treat all possible combinations!

Goal?

When?

What?

see also https://www.ki-absicherung.vdali.de; (Willers et al. 2020) Fig. 1

https://www.ki-absicherung.vdali.de/
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What is mitigated?
Safety Concerns
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AI Specifics

› Unreliable confidence

information

› Brittleness

(e.g. against perturbations, lack 

of temporal stability)

› Incomprehensible behavior

› Insufficient plausibility

Metrics

› Safety relevant metric

Others

› Lack of algorithmic efficiency 

(e.g. memory use, power 

consumption, frames/second)

Data

› Labeling quality

(e.g. wrong/missing (meta-)labels)

› Train/test data separation

› Representativity

› Inadequate ODD spec.

› Distributional shift over time

› Unknown behavior in rare critical 

situations

Goal?

When?

What?
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What is changed?

Mechanisms 

during creation
Specification & 

guidelines for:

• DNN design

• Dataset collection

• Training

Verification

• Testing

• (Semi-)formal

• Inspect via proxy

Validation

via traditional 

validation testing
(e.g. endurance run)

Mechanisms on 

system level
Detect & prevent at:

Input

Internal state

Output
Ensure test data representativity
cover: Experience

Learned featuresSemantic features

(Schwalbe et al. 2020)
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cf. (Voget et al. 2018)

When is it applied?
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Inherent Model
e.g. neural network

Learning 

Goal
Training 

Procedure

Post-

processing
e.g. pruning

Learning Content
e.g. training data,

symbolic knowledge

Model prior

Prevent causes 

for errors!

…

Verify & validate!

and pre-/post-

processing
e.g. monitoring

Prevent & 

catch errors!

Goal?

When?

What?
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› For verification in general: Method for obtaining evidences is ...

› Appropriate (theoretically measures what is needed)

› Known to work

› Applicable / correctly applied

› For performance claims:

› Correct metrics & deduction

› Statistical significance wrt. claim

› Representative test data

› Appropriate ML model

› Assumptions on environment and surrounding system

Validation of an Evidence Method

2023-05-11Dr. Gesina Schwalbe © Continental AG 16
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› Dataset diversity: e.g.,

› Image manipulation

› Addition of artifacts cf. (Zendel et al. 2015)

› Domain randomization

› Synthetic data generation / augmentation

› Counterexample generation (Dreossi et al. 2018)

› Image selection: e.g., Active learning

› Other topics: Label quality, data representativity & fidelity

Creation
Training Data Optimization (Shorten and Khoshgoftaar 2019)

(Geirhos et al. 2019), Fig. 1

“speed limit 45”

(Eykholt et al. 2018, Tab. 1)

+ =

“bus” “ostrich”

in:

out:

(Guo et al. 2018, Fig. 1, p. 2)
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› Explainable intermediate 

output, e.g.

› Concept Bottlenecks
(Losch et al. 2020), (Koh et al. 2020)

› Attention heatmaps

› Soft training constraints, e.g.

› Hierarchical

(Roychowdhury, Diligenti, and Gori 2018)

› Locality of activations

› Robustness against 

perturbations

› Temporal Consistency
(Varghese et al. 2021)

› Proper uncertainty output, e.g.

via

› Ensembling

› Bayesian DNNs

Creation
Architecture and Training Objective

2023-05-11Dr. Gesina Schwalbe © Continental AG 18

(Kim and Canny 2017), Fig. 5

Movables

Persons Cars

(Kendall & Gal 2017, Fig. 1, p. 2)
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“Attention” heatmap-methods for plausibility checks, e.g.

› White-box (gradients, relevance back-propagation, …)

› Black-box (occlusion based, perturbation based …)

Knowledge V&V by disentanglement of internal semantics

› Mining of learned concepts
(Ge et al. 2021), (Zhang et al. 2021), (Esser et al. 2020)

› Interpretable proxy models

› Properties of learned concepts (e.g., similarity)
(Fong and Vedaldi 2018), (Schwalbe and Schels 2020)

Offline Verification
Quantitative Explainable AI

2023-05-11Dr. Gesina Schwalbe © Continental AG 19

(Kindermans et al. 2018), Fig. 6

(Olah et al. 2017), Fig. 5

(Hohman et al. 2020), Fig. 2
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Formal verification

› Goals: Find

› counterexamples

› validity range

› reachable set

› Methods Examples:

layer-by-layer reachability / 

boundary estimation,

(constrained) optimization,

search,

solvers

(Formal) Testing

› Goals:

› Semantic coverage e.g. via SDL & sampler

› Latent space coverage (direct & indirect)

› Methods Examples:

Differential (Pei et al. 2017),

fuzzy (Odena et al. 2019),

concolic (Sun et al. 2018)

Offline Verification
Formal Methods

2023-05-11Dr. Gesina Schwalbe © Continental AG 20

(Liu et al. 2019), Fig. 2
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› Input filtering (Ilyas et al. 2019), (Kapoor et al. 2020)

› Redundancy & voting

› Monitoring for

› Out-of-distribution, e.g., via

› Uncertainty estimation

› Plausibility / consistency with constraints, e.g.,

› Temporal consistency (Varghese et al. 2020)

› Local stability

› Semantic constraints on outputs
(Schwalbe 2021), (Giunchiglia et al. 2022)

› Error handling, e.g., via removal, correction, additional queries, …

Online Verification: System level measures

2023-05-11Dr. Gesina Schwalbe © Continental AG 21

𝑓(𝑥)

Voting

…
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Offline Verification
Example: Explainable AI to Verify Logical Constraints

Dr. Gesina Schwalbe © Continental AG

isPerson 𝑝

𝐹 𝑝 = isHead 𝑝 → isPerson 𝑝
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3

2 Concept Analysis

Evaluate on 

new samples

(Schwalbe et al. 2022)
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Technologies involved in safety assurance are highly diverse

Categories: Goal? Target element? When (in lifecycle)?

› Creation (“build it right”)

› V&V (“check it right”)

› System design (“prevent / mitigate failing in op”)

To provide convincing evidence method must be

applicable, appropriate, known to work; results documented

Conclusion

2023-05-11Dr. Gesina Schwalbe © Continental AG 24
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